TAS

Happy New Year!

10848745_10204926612141337_1798843318220576392_o

At home of Toyota 86, they’re having TAS. This year, they made interesting announcement. They’re official making Toyota 86 x Style Cb. If you’re wondering what they are, this is it.

10847205_10204935880093030_3846684963467847452_o

Now, this isn’t for everyone. They made this design more towards for lady. If you watch this commercial, kinda see that, they’re aiming for ladies.

They also have teased us with vert 86 again. This time, they changed a bit. I must say, I do like the color… but I’m still questioning the front bumper.

10479889_10204936020976552_1992507112007620353_o

10687892_10204936021016553_8601667829247880085_o

10915336_10204936020896550_8251783344444298648_n

Photo credit to: Moto Miwa (founder & owner of Club4AG)

Advertisements

Break down of FA20/4U-GSE

Very good article of FA20/4U-GSE break down. If you got time, worth read.

Reference: Revolution.com

Article by Brian Hannon. Photography by Nathan Leach-Proffer and Ryan Randels.
Every week this build gets more and more interesting as we dive deeper into the inner workings o the Subaru BRZ and Scion FR-S platform. Last week we took a look at the first step in our build process: reinforcing the chassis by seam welding the structural body components. For this installment, we peel back the layers of the engine to understand what we have to work with, and where it can be improved in relation to our initial build objectives. As with any good build, you define an objective based on what you have to work with. In order to properly understand what we had to work with first hand, it was necessary that we dive into the platform’s heart. This time, we turned to SCR Performance because of their intimate knowledge of Subaru drivetrains, as well as their reputation as top engine builders. We knew they would give an accurate assessment of what areas we’d need to address as the build progresses.
While Project BRZ was off getting work done on various other components (seam welding, suspension assessment, etc.), our donor engine arrived at SCR for teardown and assessment. SCR requested we source a used engine so they could properly analyze and assess the stock platform’s weaknesses and wear points. We liked this idea, as a used engine would show any potential weak points since it has been exposed to the wear and tear of every day abuse, and can tell expert builders what they need to look out for when adding more power.
Once the donor engine, with 18,000 miles on the clock, arrived, SCR immediately started tearing it down and documenting what they found. All of the information provided in this article came from SCR’s direct assessment, as well as several conversations with other key industry personalities. We’ve broken down the assessments into the following major component groups: bottom end, top end, fuel, ignition, oil and cooling.

FA20 / 4U-GSE ENGINE SPECS

Before we tear it apart, let’s have a quick refresher on the stock motor we’re dealing with.
• Engine Code: Subaru – FA20/Toyota – 4U-GSE
• Developed from the FB engine (Subaru Forrester)
• Developed with goals of weight reduction, while maintaining durability
• Horizontally opposed (boxer) 4-cylinder dual overhead cam engine
• 1998cc, square 86mm bore and 86mm stroke
• Toyota’s D4-S injection system (port and direct injection)
• AVCS (Active Valve Control System)
• Compression Ratio: 12.5:1—very high value rarely found on production engines
• Redline – 7,450 rpm
• Power Output – 197hp @ 7,000 rpm, 151 lb-ft @ 6,400 rpm
Subaru did an impressive job of cramming a lot of technology and capability into a potent little package. This gives us a lot to work with as we get ready to wring out a lot more power from our FA20!

INITIAL TEARDOWN

As SCR tore down the engine, they gave us their thoughts on what they found. Though it did have just 18,000 miles, there was no sign of excessive wear on bearings, sides of the pistons, cylinder bores and crank journals. Not too surprising, but if any areas of concern were rearing their heads that would be a focal point for us to address during the build.

FA20 / 4U-GSE BOTTOM END AND ROTATING ASSEMBLY

The heart of the powerplant is the block, which is unique to the FA/FB series of engines, and features an open deck design. On other motors, they will cast the block out of solid billet or similar material and then drill out the ports and passageways into it, forming what is called a “closed deck.” On the FA, they cast all these voids in for the oil and coolant as it’s a more cost-effective process, and keeps the weight down, though the tradeoff is reduced cylinder pressure support you would require for high-performance applications. When the air fuel mixture ignites, you have a huge pressure spike in the cylinder and combustion chamber, and the forces are pushing at all angles. Something is going to give eventually if enough pressure is applied. Since we plan to add forced induction, you can certainly understand why this is an area of concern for us.
Fortunately, there are some options available. Though this is a bit low-tech, some drag race motors have the coolant passages filled with concrete to make a solid block. This adds strength to the cylinder walls, but obviously isn’t realistic for a performance application that runs further than a quarter mile at a time. We aren’t doing that. The other, more refined and accepted option is to employ sleeve inserts. The stock FA20 has thin iron liners that act as a friction surface (similar to a bearing) to keep the piston rings from wearing directly on the aluminum cylinder walls.
For our build, SCR doesn’t feel it’s necessary to re-sleeve the block based on the objectives we developed. They are basing that assessment on what others builders have accomplished so far. Case in point, Full Blown is already claiming 700hp on the stock bottom end. Not too shabby.
These motors seem to be making serious power, but the longevity is what’s in question. What’s the failure point? What’s going to eventually fail at those bigger power levels? We are still waiting to see as there are several companies pushing the envelope. Fortunately, the FA20 is proving to be pretty strong, even when laying down some pretty big power numbers.
SCR didn’t find too many surprises with the crankshaft, but did find one item of note. Compared with the EJ-series cranks, the FA has thinner rod and main bearings because the engine wasn’t designed to produce the power levels of the EJ. The engine was designed to be high-revving and efficient, which the thinner bearings help with. Keep in mind that, anytime you reduce friction surface area, you reduce drag, leading to more efficiency of the rotating assembly.
Subaru has done a good job of producing a very high-quality bearing used on the crankshaft and rods. SCR doesn’t see any reason to put a different bearing material or change the tolerances.
The rods have a fairly unique feature found in boxer-style engines. While most rod caps are cut at a straight angle, the FA20’s rod caps are angled, which allows you to remove the rods and pistons without splitting the case halvesvery handy for limiting time during maintenance and upgrades.
Another key point is that Subaru cast the rod as a full assembly, scored the rod, then used an impact to break apart the cap from the rest of the rod (this maintains the natural grain of the metal, stronger design). This process not only yields a stronger design, but also reduces production cost; best of both worlds for the manufacturer. Be sure that you don’t mix the rods and caps up in any way when reassembling the bottom end as they fit together like a puzzle!
The piston ring gaps are pretty small at the top and the lower ring gap is quite a bit wider than what SCR is used to seeing (compared to the EJ-series). The thought is the small gap up top prevents compression loss and the larger gap at the bottom allows for gasses to escape into the crankcase, and not build up between the rings.
When it comes to the pistons, we’re actually going to rely on our partners at Crawford to help us out with that information. They’ve already done the R&D and have designed a custom set of pistons that are different than all the other off-the-shelf products. They’ve gone above and beyond to redesign the part, having changed pin locations and rod lengths to get better rod ratios, and reduce piston side loading on cylinder walls to help the engine work more efficiently and rev up quicker to perform the way they want it to. It’s important that we address the ring gaps specifically for our application, as it will certainly change due to the fact that the engine will now be turbocharged.
One thing SCR noticed during disassembly was the excessive use of sealant–Subaru used an absolute ton of it. While Subaru did their best to make sure the engine wasn’t going to leak any oil, it certainly made it difficult to disassemble. SCR had to cut the sealant, working all the way around the perimeter of the part just to separate it. This proved VERY time intensive to separate and clean the components of all the sealant.
SCR speculated Subaru didn’t want to use a composite gasket as it becomes a failure point. Subaru has a fairly good track record to support their decision, though, as all EJ-series Subaru motors have sealant in between the block halves, and you hardly ever hear about leaking there. It’s basically two machined surfaces with sealant: so there’s no way it can develop a leak unless there’s been excessive force or improperly applied.

FA20 / 4U-GSE TOP END AND VALVETRAIN

As SCR learned, cylinder head removal has a few extra steps with the FA20. To get the cylinder heads off the engine, you actually have to pull the cam bridges off since they block all access to the head bolts. Common sense will tell you that you can’t physically remove the head until you have access to the bolts. There is some silver lining, though, as the cam bridges are actually a modular setup that keeps the cams in their cam bearing journals when you remove the bridges.
Subaru has transitioned to a roller rocker-style, cam lifter design, which helps reduce a friction point in the valve train. Since it’s still a solid lifter design, it’s something that, over time, will need adjustment to keep within spec. Unfortunately, the cam bridges rear their ugly heads again as you have to remove them if you want to adjust the valve clearances.
The intake ports look generally large when compared to the normal EJ-series, but we won’t know for sure until we run the heads on a flow bench to obtain the necessary data. As we mentioned in a previous article, the factory intake manifold no longer has a pesky TGV like the old EJ-series and FB motors, since a premium was placed on smooth airflow to support the higher-revving nature of the FA20.
Continuing upstream, the high-pressure fuel injector is pretty similar in design to the rest of the industry, so nothing earth-shattering there. Between the multi-port and direct injection, they can get a better mixture of the fuel and air based on driving situations, giving more of a complete burn. Each of the different fuel systems has their own benefits and weaknesses allowing Subaru to exploit the best of both worlds. The direct-injection provides better fuel atomization under heavier loads, while the port injection helps to manage carbon build-up at lighter loads and idle.
Direct-injection systems require a high-pressure fuel feed (in the thousands of PSI), and generally you need mechanical assistance to elevate pressure to those levels. The FA20s pump is mechanically driven off the camshaft via three-lobes, so in one revolution it strokes the fuel pump three times. This takes fuel pressure from the electric in-tank pump from about 60 PSI to the needed thousands of PSI.
An oil-actuated system (ACVS for Active Control Valve System) allows for near continuous camshaft adjustment to offer the most power for a given throttle position and rpm. Both the intake and exhaust cams can alter their relation to the crankshaft, and the whole show is monitored by the ECU.
Speaking of the camshafts, SCR noted they have nice big fat lobes, so they may not be something we need to worry about swapping out. Couple that with the near infinite adjustability of the cam timing, and there may not be much need to put big aftermarket cam shafts in to get the power.
As SCR stepped into the combustion chamber, they noticed there is not a whole lot of clearance between the valves and the pistons. If you’re trying to go with cams that have higher lift and/or duration, you could potentially have interference issues.
The valve stems are pretty small on these motors to help out with air flow as the smaller diameter takes up less space in the intake and exhaust ports.
In the name of efficiency, lightweight valve springs are employed so the engine isn’t fighting against its own components to operate. However, because the springs are so light, they could have issues closing the intake valves when they are fighting against 30lbs of boost trying to cram into the combustion chamber. This is an area we are looking to address.

FA20 / 4U-GSE IGNITION SYSTEM

As with most newer performance vehicles, coil packs are used on each cylinder to control spark. This is a big advantage for tuning as ECU’s are so fast they can really utilize the independent coil packs, and direct injection, to essentially tune each cylinder independently.
Stock spark plugs are a heat-range 9, so they’re extremely cold plugs to begin with, and extremely detonation resistantsomething we’ll battle with forced induction.
If we have issues with blowing out the spark, we can always hook up an amplifier to boost the signal, but the kits are designed for a hot, heavy spark, so right now we don’t see the need to upgrade.

FA20 / 4U-GSE OIL & COOLING SYSTEMS

Since additional oil pressure is required for the variable cam timing system, the standard oil pump was designed with plenty of flow and is actually a fairly robust unit. We don’t see ourselves upgrading to a larger pump for our build.

FA20 / 4U-GSE OIL PAN

The FA utilizes an upper and lower oil pan where the upper is actually a functional component of the bottom of the block. On the EJ-series, it’s not a two-part component. The “upper oil pan” completes the bottom part of the block, while the “lower oil pan” is generally small if looked at by itself. However, the upper oil pan will also contain a considerable amount of the oil capacity. The small lower oil pan also acts as a funnel since the pickup point is very precise. Encountering g-forces commonly found on race tracks will begin to cause issues with this design. A larger oil pan with baffling will allow you to not worry as much about waiting for the oil to drain from the heads while pulling some serious g’s.
If you are looking to turbocharge your FA20 like we are, you need to consider how you will get oil to the turbocharger. If you are working on a budget, you will need to add a port to the oil pan for a turbo oil drain line. Sounds easy, but placement can be very important (especially on a small volume pan like the FAs), and they can be more prone to leaks. It may be best to source an aftermarket pan that was designed specifically for turbocharged applications that have increased volume and careful consideration of return line placement.
Last but not least, SCR evaluated the radiator and associated cooling components. While the stock radiator seemed up to the task of keeping a stock, or mildly tuned engine, at a safe operating temperature, we’re ditching it in favor of one with more capacity. It may not necessarily need a larger unit, but with the power we expect the engine to make, along with mounting an intercooler in front of it, we want to ensure we won’t encounter any cooling problems whether we’re on the track or sitting in line to get into a show.
Fortunately, the rest of the cooling system was deemed OK as the water pump can flow plenty of fluid, and the stock heat-range thermostat will most likely be fine. There are companies that can provide a lower-temp thermostat, but typically you want to have the engine running at the right temp as it will help with proper atomization of the fuel.
That surely was a mouthful, but we feel this was one of the most important articles in our entire BRZ / FR-S Performance series. Now that we understand the strengths and weaknesses of the platform’s powerplant, we can start to address those items with upgrades. Next week we’re postponing our documentary article to the following week as the team will be in Houston for TX2K14. In that installation, we will take a look at our new Air Lift Performance suspension with an overview, unpacking, and analysis (visual inspection and comparison)! Since we got our hands on it, and are able to measure clearances and adjustability, we’ve developed a specific build plan that we know you’re going to love!

Tada talks BMW, dogs and drinking beer…

Image

Tada-san talk about having possible of hatch 86 along w having hard time w BMW members.

Reference: Toyota UK Blog

Tetsuya Tada, the chief engineer for GT86 talks about the FT-86 Open convertible concept unveiled at the 2013 Geneva Motor Show, working with BMW, dogs and drinking beer…

There’s no doubt that the Toyota GT86 is a special car, but as we recently reported, without major backing from on high within Toyota, it might never have happened.

Andrew English, who produced that story for us, caught up with GT86 chief engineer Tetsuya Tada for part two of that original tale. This time to talk convertibles, shooting brakes, saloons and of courseBMW

Here’s Tada-san’s story, in his own words.

Tada and the FT-86 Open Concept at the 2013 Geneva Motor Show

“As far as the convertible is concerned, there’s still some way to go before production. We’ve got many engineering challenges and not all of them are solved yet.

“But from the outset, when we were engineering the coupé, we had the cabrio in mind. So we knew all the hard points that would be involved when it became an open top and bore those in mind. So the indexed windows are one highlight, also the way we laid out the rear suspension to allow for the folding roof.

“Our exterior designer has already had in his mind having a cabrio version, so in his drawings he did a cut-off roof. The designer, Mr Brouchan, he likes convertibles. At the beginning of the project I wasn’t too concerned about a convertible version, but I would sneak up on him and he was always drawing a drophead. I would say, ‘you’re drawing a convertible, again!’.

“Mass producing a sports car for a company like Toyota carries a big business risk and we’ve tried to mitigate that risk with our collaboration with Subaru. We say, ‘mitigate’ in one [easy] word, but we had to make some really tough decisions for us to realise this. Also, along the way, we investigated the possibility of a sedan [saloon] and a shooting brake.

“Actually we tried to do this secretly but the executives found us out. They said: “what are you doing? Will you please focus on the coupé.” So that was our focal point and it was only with the success of the coupé that we were able to bring out the prototype of the convertible. It would never have existed without the support from you and the customers.

“It’s just my personal dream that the GT86 could become a family like what BMW has done with the Mini family. I hope that happens. I also have five dogs myself and I would like to have them in the car, so a sports shooting break would be just right.

“Actually I am flying to Munich after the [Geneva] motor show for discussion about the future cooperation with BMW. We are already discussing what we can do and the potential results of this collaboration. One of the things we learned from our cooperation with Subaru is how to bring these two different cultures together. Something like the GT86 sports car was particularly difficult in terms of collaboration, but what we can take from it is the experience of figuring out how we can get the obstacles to us working together for us. I am hoping that we can leverage this experience when we work with BMW. So just like we bought the GT86 out of our work with Subaru, I am hoping for a synergy effect with BMW that will result in a product that none of us could have imagined; something more than anyone expects. I would like that to be something like a sports car… I would even go so far as to say that for the collaboration to work we have to bring a product which exceeds all these expectations.

“It is absolutely essential to have great connections with each other that go beyond just pure business logic. I was able to have remarkable encounters with people at Subaru and we had supporters behind us on the Toyota and the Subaru side. I’d even say these connections have to happen if the BMW collaboration is to work. If we carried along the lines of same-old, same-old, then nothing good will come out of this.

“At the moment we are struggling, because we are having this really business-like dealing with BMW and we haven’t really been able to get through that barrier so far. Perhaps I need to meet them socially and drink beer and eat sausage together. In fact the one time I felt we went beyond the business-like barrier was when we all went to Oktoberfest and drank beer. That was the one time, when we were drinking together that I thought, these are unexpectedly good people…

“I have a friend in Mazda, he is chief engineer on the MX-5 and of course they have just announced a cooperation with Alfa Romeo. Because we talk a lot, I know he is going through very tough times because he is trying to get this project rolling. In collaborative projects like we have experienced, there is always going to be a long, long time where you are in doubt about it all, asking yourself, ‘why are we doing this? Why are we in this collaboration? Wouldn’t it be quicker just to do it ourselves?’ – there’s always this period. Luckily for the collaboration on the GT86, we got to a turning point in the collaboration, where we became one team (Team 86) and that goes beyond being Japanese and German, but having a common goal and all working towards the same thing. I’m hoping that the collaboration between Toyota and BMW will at some stage reach the same thing.

“We are investigating several aspects [to this deal] and I assume that it will be much tougher than what we’ve had with the Subaru deal. One thing that makes it difficult is that we don’t have a cross shareholding relationship.”

Well, looks like it’s gonna be more than language barrier Tada-san need to break. I wish him a luck and hope to see hatch 86 and other awesome car co-design by both Toyota & BMW

Hybrid Toyota 86?

Image

It’s pretty interesting to hear all the nay sayer on Hybrid technology into the 86. Giving different variety of 86 is a good idea. I kinda hate the idea of having only 1 model. Why not going w all different types of models. Coupe, Sedan, Wagon, Convertible, Hybrid, Diesel, Turbo, Supercharger and more. Open up an option for all different types of owners.

Reference: Jalopnik

Go ahead and sit down if you aren’t already, because I have some news that may upset you: it is possible that our beloved Toyota GT-86 (aka Scion FR-S, aka Subaru BRZ, aka The Toyobaru) could get a hybrid version in the near future. Gasp!

That’s what the UK’s Autocar is reporting, anyway. They spoke to chief engineer Tetsuya Tada, who said he is exploring all possibilities for improving the car’s performance. That could include forced induction, but it could also include electric motor assistance. Here’s what he said:

“I’ve been asked a lot about a turbocharging,” Tada told us. “We are already working on a mid-life facelift for the car, and we are investigating both turbocharging and supercharging too,” he added. “But an electric motor assistance solution is also possible, and would bring benefits that forced induction does not.”

Okay, more power for the Toyobaru. Enthusiasts have been clamoring for that since then beginning, although I have driven it and I don’t feel like it needs it all that much. Tada adds this, and I think it’s an important point.

“But we must guard against compromising any of the key virtues of the standard GT86 in the pursuit of more power.”

I’m glad Tada sees that. He probably knows better than anyone that one of the best things about the Toyobaru is its purity, its unabashed old-school-ness. Do they really want to mess with that in the pursuit of power?

On the other hand, let’s play devil’s advocate. Nearly all of the hypercars we saw at Geneva this week have hybrid systems to boost power and efficiency, one way or another. Now we could also see that on an affordable sportscar most of us love already.

Does this mean that hybrids have finally arrived for people like you and me? That they aren’t just for Priuses and Insights anymore? Tell us what you think this means, and if the Toyobaru should go hybrid or not.